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Abstract - In this paper an enhanced reliability protocol  added 
to the ODMRP multicast ad hoc protocol is described. This 
protocol increases the overall data packet delivery ratio by 
adding packet storage and retransmission operations 
coordinated by the multicast source.  Storage responsibilities 
are assigned based on localized ‘neighborhoods’ of nodes with 
minimal spanning hopcount, within the group. Simulation 
results are presented that reflect the protocol overhead of both 
ODMRP and the reliability component, broken down by 
operational phase.   
 
Index Terms – Mobile Networking, Ad Hoc Wireless, Multicast,  
Reliable, ODMRP. 

I. INTRODUCTION 
d hoc networks consist of mobile wireless nodes 
communicating with no fixed infrastructure support. 

Communication occurs on a node to node basis, with the links 
established between nodes forming the overall ad hoc 
network. Applications for ad hoc networks range from an 
informal collection of conference participants communicating 
in a ballroom, to soldiers organizing in a battlefield or rescuers 
coordinating efforts on a remote mountaintop. Group, or 
multicast, communication is a natural extension for ad hoc 
networks. It is necessary for many applications. Where group 
communication is required, reliability is often an important 
issue: in situations where lives are at stake, missed messages 
can have very negative consequences.  

II. RELIABLE AD HOC GROUP COMMUNICATION 
Reliable group communication research has a relatively 

long history in wired networks.  It is becoming a core enabler 
for organizations providing distributed services where specific 
communication reliability guarantees between nodes at 
multiple sites are required. Each node in such systems 
processes all generated messages, none of which can be 
dropped without serious consequences.        

To date, it is not feasible to implement reliable 
communication protocols in Ad Hoc networks. It is not even 
possible to guarantee delivery of data packets. If a node stays 
out of range of others, it will never receive data packets. Most 
existing ad hoc multicast protocols try to deliver the greatest 
number of data packets to other nodes on a best effort basis. 
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This paper is an initial study of factors involved in 
eventually reaching 100% reliability.  In general, three factors 
are responsible for missed data in ad hoc networks. The first is 
dropped packets due to network link contention from control 
overhead, the second is dropped packets due to contention 
from data forwarding overhead, and the third is dropped 
packets due to non existent links. The first two factors are 
more common in dense networks, while the third factor occurs  
increasingly as network node density lessens. The reliability 
of most basic ad hoc multicast protocols are affected by these 
three factors, since the protocols rely on initial best-effort data 
delivery.  For these protocols, some mechanism must be added  
if the goal is eventual 100% reliability.  

A mechanism of storing and resending data  packets is one 
potential solution to missing data packets.  Whether packets 
are undelivered due to network contention or missing links, 
future data packet resends can allow for improved chances of 
eventual data delivery. This mechanism will be successful if 
the dropped packet count due to the new overhead generated 
from the resend mechanisms is more than outweighed by an 
overall increase in data delivery. The goal then, is to develop 
mechanisms that increase network contention due to the new 
control overhead and data packet resend overhead as 
minimally as possible, while increasing endpoint delivery of 
missing data packets as much as possible. 

In this paper, the strategy taken was to implement data 
packet storage and retransmit techniques coordinated by the 
multicast source. ODMRP was taken as the underlying 
multicast group communication protocol, since it is well 
documented and simulations[7] have shown it to have a 
comparatively high data delivery ratio. The storage and 
retransmit mechanisms distribute the responsibility for 
message storage and retransmission to all group members, 
with the source of each data stream being responsible for the 
partitioning of nodes into neighborhoods and assignment of 
storage responsibilities. With group members partitioned into 
neighborhoods and each neighborhood storing a ‘sliding 
window’ of the full dataset, multiple datasets can be stored 
across the network as the group member count increases, and 
NACK requests for data packets are increasingly likely to be 
answered locally, reducing both network overhead and data  
latency as the network grows. 

The choice of the source node as coordinator for these 
responsibilities is not an intuitive one. It is common 
knowledge that ad hoc multicast protocols are distributed 
algorithms, and any centralized component is to be avoided. 
However, several factors suggested that this R-ODMRP 
centralized mechanism could be successful:  
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• An implicit centralized component, the data source,  is 
unavoidable for any multicast ad hoc communication 
protocol.  If the central source of data dies or is partitioned,  
there will be no data to reliably deliver. 

• ODMRP, while categorized as non-centralized, still relies 
on the near-centralized two step process of join query/reply 
for datapath establishment. In the extreme case (with 
receivers existing only at the outer edge of a network), this 
mechanism duplicates R-ODMRP’s mechanism of reliable 
join query/reply, with the final step of nodes adjacent to 
the source sending a packet back  to the source removed.  

 
Section 3 discusses related work, section 4 presents a brief 
overview of ODMRP, section 5 describes R-ODMRP, and 
section 6 describes the neighborhood creation algorithm in 
detail. Section 7 presents a performance evaluation of R-
ODMRP, giving a detailed description of the packet 
overhead for each phase of the protocol. Finally, section 8 
covers future work, and section 9 concludes the paper.  

III. RELATED WORK 
Multicast reliability in ad hoc networks is a relatively new 

area of research, with results appearing in the recent years.  
Mechanisms from protocols can be broken down into three 
categories:  Congestion Control mechanisms such as RALM,  
Forward Error Correction mechanisms such as Packet Erasure 
Recovery, and Data Packet Retransmission mechanisms such 
as RMA, Anonymous Gossip and Hyperflooding. 

RALM[10] is a reliability protocol that  achieves a higher 
data delivery ratio by enforcing error and congestion control 
similar to TCP.  Reliable data delivery is guaranteed to one 
group member at a time, in round-robin fashon.  This is 
accomplished by requiring the source to select a neighbor to 
transmit the data to. The neighbor will reply with either a 
positive ACK, showing the data was successfully received, or 
a negative NACK, requesting retransmission of missing data. 
This feedback from the neighbor is also used to adjust the 
sources window size.  This window increases linearly, but if 
losses begin to occur it is halved. In this approach decreased 
throughput is traded off for increased reliability.  Another 
downside is that even with congestion control, dropped 
packets are resent from the source rather than locally, creating 
greater network overhead from both the receiver NACK and 
the source retransmit. 

Packet Erasure Recovery [9] uses error correction codes to 
provide reliability. Data packets are encoded and split into 
pieces, and these pieces are then transmitted to receivers.  If a 
certain number of packet pieces arrive at a receiver, the data 
packet is correctly reassembled and processed.  The downside 
of this approach is that forward error correction work best 
when loss rates are predictable. In ad hoc networks, worst case 
behavior for a node to drop packets is unpredictable: a node 
may go out of range of the network and stay out of range. 

RMA [5] is a  reliable ad hoc multicast protocol that 
assumes sources know the Ids of all receivers in the network, 
and ensures they receive all data packets by recording positive 
ACKS from all receivers. Retransmissions from the source 
provide reliability. Stable links are given preference by using 

the routing metric of the expected lifetime of a link. A 
downside of this approach is that all receivers sending ACKs 
back to the source makes  scalability of the protocol 
questionable, due to ACK implosions. 

Anonymous Gossip[3] allows for randomly selected pairs 
of group nodes exchanging information on received and lost 
packets. A node missing data packets will periodically send a 
gossip request, containing data on lost packets, sequence 
number of next expected packet and source and group address, 
to a random neighbor node.  If the neighbor node is a group 
member, it unicasts a reply back to the initiator, otherwise it 
randomly selects a neighbor to forward the message to. The 
multicast protocol in use must provide nodes with hopcounts 
to their nearest neighbors, to accomplish this. An unavoidable 
downside of this approach is that the increased network traffic 
created by the protocol negatively impacts the data loss the 
protocol attempts to correct. Also, given that request / replies 
occur between random nodes, this is a best effort technique.  

Hyper flooding [8] is an adaptive technique using flooding 
as the base protocol, with modifications to prevent loops. 
Nodes record neighbors by listening to and sending hello 
messages. Received data packets are stored, and rebroadcasts 
of these data packets occur when a packet is received from a 
node that is not on the neighbor list, or when receiving a hello 
message from a new node. In these cases, all packets in the 
data packet cache are retransmitted.  The downside of this 
approach is a far greater amount of network overhead, and the 
large amount of storage required at each node. 

IV. ODMRP OVERVIEW  
ODMRP[6] is a mesh-based on-demand ad hoc protocol for 

group communication. It performs scoped flooding of data 
packets to all group members by establishing a ‘forwarding 
group’ of network nodes between a source and group 
members. Route refreshes update the broken links arising 
from node mobility or resource changes.  Route setup and 
refresh each consist of two phases: Request and Reply. 

A. Route setup - Request phase  
When a source has multicast data to send but no knowledge 

of receivers,  it builds a “Join Query” packet, adds its IP 
address, and broadcasts it. Each node receiving the Join Query 
will store the source IP address and packet ID, add the IP 
addresses of the upstream node and originating source to its 
routing table, add its own IP address into the last hop IP 
address field, and rebroadcast it downstream. The Join Query 
floods the network, reaching all receivers. 

B. Route setup - Reply Phase 
  A group member, upon receiving a Join Query, completes 
the processing described above for the Join Query, then 
initiates a “Join Reply” packet once the multicast route is 
selected. The receiver node adds all source and next hop IP 
addresses for the group from its routing table, adds its own IP 
address into the previous hop field, and broadcasts the Join 
Reply packet upstream. Each neighbor node receiving this 
packet checks the set of next hop IP addresses. If a next hop 
IP address matches the neighbor node’s own, the node is on 
the forwarding path between source and receiver, and is part 
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of the forwarding group. The node sets its Forwarding Group 
flag, looks into its own routing table entries for the group ID 
and builds a Join Reply packet to broadcast upstream. 

C. Forwarding Data and Maintenance 
  When a node receives a multicast data packet, it checks for 
duplicates, then checks its Forwarding Group flag. If the flag 
is set, the node is a forwarding group member, and will 
rebroadcast the packet to its neighbors.  

Periodically, the source will refresh routes with another Join 
Query. All forwarding group members will then be reset 
according to the new network topology. Group membership is 
preserved in a soft state. Once a source has no data to 
multicast, it stops sending periodic Join Query packets. All 
forwarding nodes will then eventually timeout and revert to 
non-forwarding status for that source. If a receiver wants to 
leave the group it stops sending Join Reply packets. 

D. Unicast Functionality  
Using the same Join Query/Join Reply protocol with a 

unicast IP address as the destination, a unicast sender can 
discover a route to a unicast receiver. Since duplicate Join 
Query packets are dropped (based on source IP address and 
data packet sequence number), the route created by unicast 
operation is a single path. 

E. ODMRP Data Structures 
Following are the standard data structures of ODMRP. 

• Message Cache: When a node receives a Join Request or 
data, it stores the source ID, sequence number and group 
address of the packet in this cache to detect duplicates.  
This cache is timed out in Round Robin fashion. 

• Member Table: This table holds the multicast address and 
source node address combination that  the current node is a 
receiver or forwarder for. An expiration time variable is in 
the table in order to expire stale entries. 

• Forwarding Group Table: This table holds the multicast 
addresses and expiration times for all multicast groups for 
which the current node is a forwarding group member. 

• Routing Table: This table holds the multicast and source 
addresses for all multicast senders the current node is a 
receiver for,  along with the next hop (upstream) address 
on the path to the source. This next hop address is used as 
the destination for Join Reply packets from the current 
node.  

V. RELIABLE ODMRP 
The technique outlined here allows each source a means to 

work with the two parameters of reliability and overhead cost, 
moving the reliability ratio up or down dynamically, over a 
single multicast session, if desired. 

A. Overview  
In R-ODMRP the responsibility for data storage and 

retransmit is assigned to all receivers of the multicast group, 
with the source of each data stream coordinating 
responsibilities. All group members are divided up by the 
source into sets of local neighborhoods.  The source sets the 
number of nodes per neighborhood, with the option of 

determining the node’s storage overhead. With each 
neighborhood member storing a portion of the data packets, 
each local neighborhood stores a distributed “sliding window” 
of all transmitted data packets. Nodes Nacking missing 
packets will be answered by neighbors unicasting replies. 

B. Packet Storage 
In R-ODMRP,  When a source initially sends out a Join 

Query, it becomes a Reliable Join Query (RJQuery) packet. 
The RJQuery packet has a timeout value attached. Once the 
RJQuery packet is sent, each node receiving it (whether a 
receiver node or not) will decrement this timer value by a 
preconfigured “two hop time” before sending the RJQuery 
downstream. After the RJQuery timer expires at each node, 
each receiver node will send a Reliable Join Reply (RJReply) 
back upstream. If a node with an expiring timer is not a 
receiver, it will send an RJReply only if it receives other 
RJReplies from downstream. 

Each RJReply contains a 2D table, known as the Network 
Datapath table.  When a node (receiver node or not) receives 
RJReplies from downstream nodes, it stores their Network 
Datapath table as a block in its own table sorted relative to 
other received blocks with the topmost block having the 
longest datapath. On timer expiration, just before the table is 
sent upstream in an RJReply, each table entry is shifted such 
that entry (x, y) becomes entry (x, y + 1), emptying the 
leftmost column, column 0. The node stores an entry for itself 
in entry (0,0) containing its id, branch count (the number of 
RJReplies received from downstream), and receiver status, 
and then forwards the table upstream in its own RJReply.  

The end result of the RJQuery/RJReply phase is that the 
source obtains a full positional listing of all receivers and 
forwarding group members in the network. RJQuery/Reply 
operations occur periodically, but at a lower frequency than 
the standard Join Query/Reply operation.   

The source will then set a number for the “nodes per 
neighborhood” count, and, with the Network Datapath table as 
input, partition all receiver nodes into local neighborhoods 
using its “Source Neighborhood” Algorithm.  The source then 
assigns data packet storage responsibilities such that the set of 
nodes within any given neighborhood will store the full set of 
data packets in sliding window fashion. 

On the next multicast data packet after a Reliable Join 
Query, the source piggybacks a table defining the range of 
packet sequence numbers each receiver in each neighborhood 
is responsible for storing. Each receiver then begins storing its 
share of data packets. This recovery scheme does not depend 
on which node stores the packets, only that they are stored 
somewhere in each neighborhood. 
  As nodes leave the group, their storage responsibilities are 
reassigned on new RJQuery/Reply rounds. However, as more 
and more nodes join over time, more neighborhoods are 
created and duplicate storage responsibilities will be assigned. 
The individual neighborhoods storing the duplicate packets 
will become smaller and smaller, relative to the overall 
network. Additionally, the source can reassign neighborhood 
size and data packet storage responsibilities on any 
RJQuery/RJReply round, dynamically adjusting reliability 
versus overhead over the course of a multicast. 
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C. Packet Retransmission  
The second responsibility, data packet retransmission, will 

be initiated by a receiver node noticing a gap in data packets.  
It will broadcast a Resend Request packet to its local 
neighborhood, with a local time-to-live scope, listing all 
packets needed by sequence number. The requestor will give 
its ID for unicast replies. Upon receiving the packet, neighbor 
nodes will check their storage for the requested sequence 
numbers and unicast found data packets back along a single 
path. If the requesting node receives an incomplete reply or no 
reply at all, it will retain all gap sequence numbers, sending 
them out in its next Resend Request.  

D. R-ODMRP Structures 
These structures are in packets sent to other nodes: 
• Network Datapath Table: This table holds the current 

node’s network positional information (node id, branch 
count and receiver status), accumulated from nodes on all 
downstream datapaths. This table is inserted into an 
RJReply packet, just before sending. The bandwidth 
requirements for a single node entry in the 2D Network 
Datapath Table in this implementation is 2 ½  bytes, based 
on a 15 bit node id, a 4 bit branch count (holding a 
maximum of 15 branches from a node), and a 1 bit boolean 
receiver status.  A single 64k data packet will hold data 
describing approximately 26,200 nodes. As yet, it is unclear 
what the maximum feasible size of ad hoc networks will be, 
but one line of thinking holds them to be smaller than this, 
such as an informal gathering of conference attendees, or a 
lone group of rescuers.  

• Data Packet Gap List: This list contains sequence numbers 
of all data packets that have not been received by the local 
node. The bandwidth  requirements used in this 
implementation were 2 bytes per packet id number.  

• Storage Responsibility Table: This table holds data packet 
storage responsibilities for all receiver nodes in the network. 
It is multicast out by the source to all receivers after the 
source neighborhood algorithm completes. The bandwidth 
requirements for a single receiver node entry in the 2D 
Storage Responsibility Table in this implementation is (2 + 
1/n) bytes, with n being the ‘nodes per neighborhood’ 
count. For a ‘nodes per neighborhood’ count of 3, a Storage 
Responsibility Table handling the node count  of 26,200 
described above will fit into a 64k data packet for the worst 
case, where every network node is a receiver.  

These structures are needed  for a node’s internal processing: 
• ResendRequestReply Cache: This table holds data packets a 

node is responsible for storing. Additionally, it holds 
snooped data packets carried in resend replies forwarded by 
a node. To identify each data packet, the group address, id 
of the source node, address of the request originator and 
previous hop forwarder, originators sequence number of the 
request, and the id of the replier are all stored. Entries are 
aged out in Round Robin fashion. All replies are stored so 
that if any nearby receiver node sends a request for the 
packet in the future, it can be answered locally. The sending 
of resend requests for different nodes are staggered by a 
random time, in order to make this likely to happen. If a 

local group of nodes all miss a data packet but get the next 
one in sequence, one node will send out a request for a data 
packet while others wait. By the time others begin to initiate 
a request for the same packet, they will likely find it stored 
in their cache already and stop the send process. 

• Data Packet Sequencer: This list holds recently received 
data packet sequence numbers along with their received 
time, for a given source. When a sequence number is 
received causing a gap, and over two seconds has elapsed 
since its reception, the missing number is listed as a gap in 
the received sequence. The data packet sequencer list is 
added to from the tail, and the head is periodically trimmed.  
Trimming occurs either periodically when received data 
packets are all in sequence, or when gaps have been 
identified and loaded to the gaps list. 

VI. R-ODMRP NEIGHBORHOOD CREATION 

A. Overview of Neighborhood Building 
As the group of receivers grows in size, neighborhood 

partitions and node data storage responsibilities are 
dynamically reallocated by the source, allowing partitioned 
neighborhoods to be composed of a diminishing percentage 
of network receiver nodes that are more closely grouped. As 
the number of receiver nodes and neighborhoods grow in an 
ad hoc network, Resend Requests and replies will travel 
fewer hops, reducing overall network traffic. Scalability is 
built in to the data storage and retransmit process. 

B.  R-ODMRP Neighborhood Building Parameters:    
A set of parameters govern R-ODMRP Neighborhood 
Building operations. Some variables are simply inputs to the 
Neighborhood Building algorithm, while others are 
configured by the source. In initial simulations they are set to 
a fixed amount, but will be varied to study various network 
conditions in future work. They are described below: 
• Size of a node’s data packet storage buffer (NodSiz):It is 

assumed that all nodes in the network will be 
homogenous, and all will have the same fixed amount of 
storage space to devote to reliable communication. 

• Amount of network data produced per sec (AmtSec):  
Fixed based on a single source generating a set number of 
fixed size packets per second.  

• Number of seconds of  data to store (NbrSec): Set to a 
value greater than the average time a node going out of 
range stays disconnected from the network. 

• Total storage capacity for a neighborhood(TotStg):  
Set by the formula: TotStg = AmtSec * NbrSec 

• Number of nodes per neighborhood ( NbrNod ):  
Set by the formula:  NbrNod = TotStg / NodSiz 

Following are R-ODMRP timing parameters: 
• Source timeout after RJQuery, before processing  

RJReplies ( SrcTimOut ):   Set based on the maximum 
simulation time for the first RJQuery to travel to the 
farthest  receiver, and the RJReply to return to the source.  

• Time for a packet to travel one hop and back 
(TwoHopTim):Used to set timers for Resend  Requests, 
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and to determine the amount to subtract from the 
SrcTimOut remainder at each downstream node.  

C.  Neighborhood Building Algorithm:  
The algorithm takes as input the Network Datapath Table and 
uses the NbrNod variable to partition the network into 
neighborhoods. Then it builds a table assigning each 
neighborhood node packet storage responsibilities, and a 
maximum hop count between nodes for each neighborhood. 
It inserts this table into the next JQuery packet before 
broadcasting it.  The algorithm works as follows:  
1.  First, a pass is done through the Network Datapath Table, 

identifying the number of receiver nodes in each row (data 
path), summing to find the total number of receivers.  The 
total number of receivers divided by NbrNod will give the 
number of neighborhoods the receivers will be partitioned 
into, as well as a remainder. The source keeps track of both 
the NbrNbrhds variable and the RmdrNbrhds variable. 

2.   Next,  construction of the Storage Responsibility Table 
begins. Starting with the receiver at the far right end of the 
top     row in the array, processing moves left, the 
hopcount is tracked, and receivers are added until a 
neighborhood is completed or a branch node is reached. 
Once a full neighborhood of receivers is identified, the 
source loads a row in its Storage Responsibility Table and 
records the maximum spanning hop count. 

3.   Upon reaching a branch node, if a full neighborhood is 
not yet built, the algorithm loads the branch node position 
on a stack, and steps down to the end of the next row. It 
continues to build the current neighborhood from the 
furthest node from the source forward, tracking hop count. 
Similarly, if a branch node is reached in this row, 
processing steps down another row, but never moving 
outside a block. Once processing again reaches the node 
originally stepped down to on a given row, the stack node 
is popped and processing continues with it. 

4.   Once the first block is complete, the algorithm moves on 
to the next. The algorithm continues on in this manner until 
all receiver nodes within each block are either partitioned 
into a neighborhood or the count of remaining receiver 
nodes within each block is less than NbrNod. 

5.   Remaining receivers in all blocks are closest to the 
source. They are partitioned in the following way: 
• Unpartitioned nodes are sorted from bottom to top, with 

associated hopcount to source retained.  
• Selection of nodes for a new neighborhood begins at the 

bottom, and works sequentially to the top. 
• Hopcount per neighborhood is the sum of the two 

greatest numbers from either the max node hopcounts 
to the source from nodes in different blocks, or the max 
hopcount between two nodes in one block. 

This algorithm will result in a table of partitioned 
neighborhoods, each with a spanning hopcount. Storage 
responsibilities are assigned by assigning a data packet 
sequence number range to each column in the table. This 
table is then put into the next JQuery packet and broadcast 
out to all receivers. Each receiver, upon receiving this 
packet, will learn its storage responsibilities and begin 
storing packets in a circular buffer.  

D. Example of Neighborhood Building 
Figure 1 shows a diagram of an example ad hoc network.  
The bold outlined node is the source, dotted outlined nodes 
are forwarding nodes and solid outlined nodes are  receivers.  
Figure 2 shows example node network datapath tables,  sent 
from the listed nodes to those upstream. Eventually the 
source will receive four RJReply Network Datapath Tables, 
sort them by block, and build a Network Datapath Table 
representing the composition of the overall ad hoc network.  
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Figure 1: Example Ad Hoc Network. 
 
Each entry in this Network Datapath Table is a structure with 
three elements: NodeID: the node’s individual id, 
Branch_Count:  the number of downstream branches (table  
 

R3 R4 2 R3 R4 R1 6 R7 8 R9
R5 R10

2 R3 R4
R5  

Figure 2: Example Network Datapath Tables (R3, 2 and R1) 
 
rows) extending from the node, and Receiver_Status: a 
Boolean  indicating  receiver/forwarder  status. The Network 
Datapath Table constructed by the source is shown in Figure 
3. This table has four blocks, built from four RJReplies. 
 

S F R1 R 6 F R7 R 8 F R9 R
4 2 1 1 2

R10 R
0

2 F R3 R R4 R
2 1 0

R5 R
0

14 F 16 F R17 R
2 2 0

R18 R
0

R15 R
0

11 F R12 R
1 0 Key:

R13 R Node Id Rcvr/Fwdr
0 Branch Ct

0

 
Figure 3: The Source’s full Network Datapath table. 
 

The source then begins the task of partitioning this table 
into neighborhoods. If the node count per neighborhood 
(NbrNod) is three, for example, the partitioning would 
happen in the following manner: 
• R9 is selected for the first neighborhood. Node 8, a branch 

node, is placed on the stack, and R10 is added. Node 8 is 
popped, and R7 completes the neighborhood. The 
neighborhood’s max hop count is set to 2.  

• R1 is reached and added to neighborhood 2. R1 is seen as 
a branch, placed on the stack, and nodes R4 and R3 are 
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added to neighborhood 2. The max hop count is set to 3, 
and R5 is a block remainder. 

• Next, R17 is selected as the first node of neighborhood 3. 
16 is placed on the stack and R18 is added to the 
neighborhood. Then node 14 is placed on the stack and 
R15 is added to the neighborhood, which is set to have a 
max hop count of  3. 

• Now the algorithm shifts to phase two. The resorted array 
of remainder nodes is shown in Figure 4. R1 has already 
been partitioned into a neighborhood, so a flag is set for 
the entry to indicate this. 

 
S F R1 R 2 F R5 R

11 F R12 R
R13 R  

Figure 4: Network Datapath Table Remainders 
 
• Starting with shortest hopcount to the source first, this 

array is traversed bottom up. First, the algorithm selects 
R13 for neighborhood 4. Next, R12 is selected for the 
neighborhood, and finally R5 is selected. The max 
hopcount is 5. 

• The algorithm completes with the Storage Responsibility 
Table shown in Figure 5. For every 100 data packets sent 
from the source, nodes in the first column will store packets 
1-33, nodes in the second will store packets 34-66 and 
nodes in the third will store packets 67-100. 

 
Pkts 1-33 Pkts 34-66 Pkts 67-100 Nbrhd Hopct

R8 R10 R7 2
R1 R4 R3 3

R17 R18 R15 3
R13 R12 R5 5

 
Figure 5: Node Packet Storage Responsibility Table. 

VII. PROTOCOL PERFORMANCE EVALUATION 
R-ODMRP was implemented in the ns-2 network simulator 

[4], developed by the University of California, Berkeley, and 
the VINT project, with Carnegie Mellon’s Monarch Project 
mobile and wireless  ns-2 extensions[11] incorporated.  The 
ns-2 simulator is commonly used in networking research. [2] 
provides a  full description of the software layers and the 
IEEE 802.11 MAC protocol used in these simulations.  The 
USC/ISI ns-2 implementation of ODMRP[12] was also used. 

A. Simulation Details 
The ODMRP and R-ODMRP simulations all executed with 

identical randomly generated baselines of network traffic and 
node movement files to more accurately compare 
performance. This baseline consisted of five node movement 
scenarios and six traffic pattern scenarios. All scenarios 
established fifty mobile nodes with a single node as multicast 
source within a 1000m x 1000m area. The radio propagation 
range for each node was 250 meters, and the channel capacity 
was 2 Mbits/sec. Each simulation executed for 600 seconds of 
simulated time. Once all nodes joined the group the multicast 
source began  transmission of 512 byte packets with a 
constant bit rate of 3 packets per second. The traffic pattern 

scenarios had 25, 30, 35, 40, 45 and 49 receiver nodes 
respectively.   

30 simulation runs were executed each for ODMRP and R-
ODMRP. A total of 60 simulations were performed.  This 
baseline was chosen because simulations [7] have shown that 
ODMRP performs best in conditions of relatively good 
network connectivity and low network  traffic load and speed, 
and any protocol with the goal of increasing its reliability 
would have to outperform standard ODMRP under these 
conditions. The reliability technique proposed in this paper 
likely has its greatest advantages in sparse networks with 
frequent longer partitions, however. 

For ODMRP and R-ODMRP, parameters were set to 3 
seconds for the Join Query flood interval and 9 seconds for 
the forwarding state timout, the values used by ODMRP’s 
creators in their simulation studies.  R-ODMRP sets a flag in 
every fourth Join Query packet, turning it into a Reliable Join 
Query packet.  The node count per neighborhood for R-
ODMRP was set at 3, and all nodes were preset to store a 
maximum of 500 data packets,  in Round Robin fashion.  

B. Initial Simulation Experiments 
Beginning experiments lead to some modifications to the 

basic protocol of R-ODMRP that produced better end results.  
Originally,  the time-to-live hopcount for a resend request 
packet was set to the maximum distance between nodes within 
a given neighborhood, but this produced relatively poor 
results. Data packets that would have been correctly delivered 
under ODMRP were dropped due to network traffic 
contention with the Resend Requests, causing the R-ODMRP 
portion of the protocol to work that much harder to try to  fill 
the gaps, leading to further network contention. In the end, for 
these simulations of high network connectivity, a TTL of 1 
gave best results for Resend Request packets. A consequence 
of this was that data packets that were undelivered to a group 
of receiver nodes tended to “bubble” across nodes over many 
cycles, increasing latency for those packets.   

C. Simulation Results 
Initial results for Total Data Packets vs. Delivered Data 
Packets (Packet Delivery Ratio) were encouraging. Table 1 
shows that when ODMRP ran alone  Packet Delivery Ratio 
varied between 92.8% and 93.8% for the thirty simulations, 
given the same number of network nodes and an increasing 
percentage of receivers.  
 

      
Table 1: Packet Delivery Ratio Table 2: Control Overhead  
 
When R-ODMRP ran, the ODMRP portion operated between 
1% and 1 ½% worse than its standalone counterpart, due to 
the added network contention, but the reliability portion 



 7

increased Packet Delivery Ratio by approximately 4% overall, 
to between 97.1% and 97.7%. 

Other metrics showed the tradeoff for this increased 
reliability, however.  The Ratio of Data and Control Packets 
vs. Delivered Data Packet (Control Overhead), shown in 
Table 2 reflects a consistent and unavoidable increase for R-
ODMRP. The differential in this metric represents greater 
channel contention, working against the basic goal of reliable 
data delivery. Though an increase must exist, since R-
ODMRP uses control packets, the increase shown for R-
ODMRP scales similarly to that of ODMRP, rising a similar 
percentage as the number of receivers in the 50 node network 
declines. 

Data Packets Forwarded vs. Data Packets Delivered 
(Forwarding Overhead), shown in Table 3, also shows an 
unavoidable increase for R-ODMRP. The differential in this 
metric also represents greater channel contention, working 
against the basic goal of reliable data delivery. An increase 
here must exist, given the store and retransmit mechanism, but 
the differential between ODMRP and R-ODMRP increases 
with an increase in receiver count.  The mechanism used for 
Resend Request/Reply will be modified to increase scalability 
of this portion of R-ODMRP.   

 

  
Table 3: Data Forwarding Overhead 
 

The data delivery latency of the two protocols  shows the 
greatest differential, however. While the average latency of 
ODMRP, and the ODMRP portion of R-ODMRP averaged 
about 10ms across all receiver counts,  the extra packets 
delivered by the Resend Request/Reply portion tended to have 
a latency of seconds, due to several factors. One is the fact 
that two seconds elapse after a gap is noticed and a Resend 
Reply packet is sent. Another is that a random delay before 
sending was added to allow snooping of other node’s Replies 
before sending a request.  A third is the mechanism used to 
trigger requests, which causes data to “bubble” across nodes.  

The competing metrics involved in enhancing reliability 
for ODMRP have been clarified as a result of this work. Four 
central factors balance against each other: Packet Delivery 
Ratio (“Reliability”), Ratio of Data and Control Packets per 
Delivered Data Packet (“Control Overhead”), Forwarding 
Efficiency (“Forwarding Overhead”) and Data Packet 
Delivery Latency to all Receivers (“Latency”). Comparing 
the basic ad hoc multicast protocol of ODMRP to R-
ODMRP, overall latency tends to be lower, reliability is 
based on the basic protocol’s best-effort delivery technique, 
and network traffic overhead is lower. When the store and 
retransmit reliability components are added to ODMRP, 
reliability increases, overall latency increases  and network 

traffic overhead increases, due to the control and forwarding 
mechanisms. A successful reliability component will, under 
various network conditions, always increase reliability (by a 
varying amount, depending on the scenario and the strength 
of the reliability component), increase overhead by an 
‘acceptable’ amount (acceptable meaning low enough so that 
the extra overhead causes minimal additional network 
contention resulting in minimal additional dropped data 
packets), and increase data packet latency minimally as 
possible. Of the three competing factors, the two overhead 
metrics are more tightly linked to increased reliability, and 
latency is the least linked metric.  

In most multicast ad hoc protocols, reliable packet delivery 
falls off sharply as network node density becomes more 
sparse, with fewer links between nodes. It is expected that 
the sparser the network, the more successful a store and 
retransmit reliability component such as R-ODMRP will be 
in achieving its goals. In sparse networks increased network 
traffic overhead required by the reliability component will 
have a lesser negative effect, since contention is less of an 
issue. It is expected that latency will be affected to a greater 
degree, since packets that would have been undelivered will 
be delivered much later, when a link is finally obtained, but 
latency will be due to the unavailability of a link rather than 
the mechanisms of the reliability component. 

D. Protocol Results by Phase 
Statistics were gathered for the normalized packet counts for 
each phase of the ODMRP portion and the reliability portion 
of R-ODMRP. Figure 6 reflects the normalized packet counts 
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Figure 6:  Normalized Packet counts for ODMRP. 
 
for all phases of ODMRP. Here it can be seen that the number 
of forwarded JQuery packets holds flat across the 6 scenarios, 
while the forwarded data packet count rises gradually. This 
makes sense, because as more receivers are added, data 
packets will at times be forwarded to further endpoints, given 
the same network. The JReply packet count shows a sharper 
increase, however. This portion of ODMRP would be the first 
to investigate in order to raise ODMRP’s overall  efficiency. 
 Figure 7 shows the corresponding normalized packet counts 
for the phases of R-ODMRP added in over the baseline series 
of runs. Here it can be seen that the number of RJQueries 
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holds flat. This is expected, since the ODMRP protocol is 
reused for this component. The count of RJReplies rises very 
gradually, almost holding flat, as the number of senders is 
increased. This count reflects the new timeout mechanism for 
gathering all downstream RJReplies before initiating one 
upstream. This metric shows that ODMRP’s network 
contention due to JReply traffic can be reduced by adopting 
the R-ODMRP mechanism. This would increase ODMRP’s 
scalability and efficiency by reducing control overhead 
network traffic. The R-ODMRP counts for Resend Requests 
and Resend Replies rise at a similar steep pace relative to the 
other protocol components, however. The Resend 
Request/Reply mechanism would be the first to look at in 
terms of increasing the efficiency of the overall R-ODMRP 
protocol. A technique to unicast out a Resend Request should 
help reduce this packet count. This will have the secondary 
effect of reducing the Resend Reply count. 
 

Normalized Packet Counts - ODMRP & RODMRP 
Protocols

0
10000
20000
30000
40000
50000
60000
70000
80000

50
n2

5r

50
n3

0r

50
n3

5r

50
n4

0r

50
n4

5r

50
n4

9r

Network Density

Pa
ck

et
 C

ou
nt fw d jqueries

fw d jreplies

fw d rjqueries

fw d rjreplies

fw d resend reqs

fw d resend replies

fw d data pkts

 
Figure 7:  Normalized Packet counts for Both. 

VIII. FUTURE WORK 
  Near term goals include economizing the Resend Request 
/Reply mechanism for dense networks. Examination of 
transmission and reception simulation detail data  will provide 
information that will help close the gap to full packet delivery.   
  Other areas for future work would be to examine other 
network scenario baselines. For example, sparse networks 
would seem to be an area where R-ODMRP could operate to 
greatest advantage. A new mechanism for Resend Requests 
must be developed for this scenario, and  merged with the 
existing  mechanism to work across cases.     

IX. CONCLUSIONS 
  This paper described R-ODMRP, a reliability protocol 
added to ODMRP.  R-ODMRP consists of operations to store 
and retransmit sequenced data packets between receiver 
nodes, with overall coordination by the source. R-ODMRP 
has been implemented in ns-2 and run against a baseline of a 
dense network with increasing receiver count, ideal conditions 
for the base ODMRP protocol.  Results show that R-ODMRP 
does outperform ODMRP under these conditions in terms of 
reliability, at an acceptable cost of an increase in routing 
efficiency and forwarding efficiency. The data delivery 

latency metric is expected to improve in future work, with fine 
tuning on the Resend Request /Reply protocol phases. 
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