
 1

Reliable Ad Hoc Group Communication using
Local Neighborhoods

Lawrence Klos, Golden G. Richard III (lklos@uno.edu, golden@cs.uno.edu)
CS Dept., University of New Orleans, New Orleans, LA 70148

Abstract - In this paper an enhanced reliability protocol added
to the ODMRP multicast ad hoc protocol is described. This
protocol increases the overall data packet delivery ratio by
adding packet storage and retransmission operations
coordinated by the multicast source. Storage responsibilities
are assigned based on localized ‘neighborhoods’ of nodes with
minimal spanning hopcount, within the group. Simulation
results are presented that reflect the protocol overhead of both
ODMRP and the reliability component, broken down by
operational phase.

Index Terms – Mobile Networking, Ad Hoc Wireless, Multicast,
Reliable, ODMRP.

I. INTRODUCTION
d hoc networks consist of mobile wireless nodes
communicating with no fixed infrastructure support.

Communication occurs on a node to node basis, with the links
established between nodes forming the overall ad hoc
network. Applications for ad hoc networks range from an
informal collection of conference participants communicating
in a ballroom, to soldiers organizing in a battlefield or rescuers
coordinating efforts on a remote mountaintop. Group, or
multicast, communication is a natural extension for ad hoc
networks. It is necessary for many applications. Where group
communication is required, reliability is often an important
issue: in situations where lives are at stake, missed messages
can have very negative consequences.

II. RELIABLE AD HOC GROUP COMMUNICATION
Reliable group communication research has a relatively

long history in wired networks. It is becoming a core enabler
for organizations providing distributed services where specific
communication reliability guarantees between nodes at
multiple sites are required. Each node in such systems
processes all generated messages, none of which can be
dropped without serious consequences.

To date, it is not feasible to implement reliable
communication protocols in Ad Hoc networks. It is not even
possible to guarantee delivery of data packets. If a node stays
out of range of others, it will never receive data packets. Most
existing ad hoc multicast protocols try to deliver the greatest
number of data packets to other nodes on a best effort basis.

Golden G. Richard III is an Associate Professor with the University of New
Orleans, New Orleans, LA 70148 (email: golden@cs.uno.edu).
Lawrence Klos is a PhD student with the University of New Orleans, New
Orleans, LA 70148 (email: lklos@uno.edu).

This paper is an initial study of factors involved in
eventually reaching 100% reliability. In general, three factors
are responsible for missed data in ad hoc networks. The first is
dropped packets due to network link contention from control
overhead, the second is dropped packets due to contention
from data forwarding overhead, and the third is dropped
packets due to non existent links. The first two factors are
more common in dense networks, while the third factor occurs
increasingly as network node density lessens. The reliability
of most basic ad hoc multicast protocols are affected by these
three factors, since the protocols rely on initial best-effort data
delivery. For these protocols, some mechanism must be added
if the goal is eventual 100% reliability.

A mechanism of storing and resending data packets is one
potential solution to missing data packets. Whether packets
are undelivered due to network contention or missing links,
future data packet resends can allow for improved chances of
eventual data delivery. This mechanism will be successful if
the dropped packet count due to the new overhead generated
from the resend mechanisms is more than outweighed by an
overall increase in data delivery. The goal then, is to develop
mechanisms that increase network contention due to the new
control overhead and data packet resend overhead as
minimally as possible, while increasing endpoint delivery of
missing data packets as much as possible.

In this paper, the strategy taken was to implement data
packet storage and retransmit techniques coordinated by the
multicast source. ODMRP was taken as the underlying
multicast group communication protocol, since it is well
documented and simulations[7] have shown it to have a
comparatively high data delivery ratio. The storage and
retransmit mechanisms distribute the responsibility for
message storage and retransmission to all group members,
with the source of each data stream being responsible for the
partitioning of nodes into neighborhoods and assignment of
storage responsibilities. With group members partitioned into
neighborhoods and each neighborhood storing a ‘sliding
window’ of the full dataset, multiple datasets can be stored
across the network as the group member count increases, and
NACK requests for data packets are increasingly likely to be
answered locally, reducing both network overhead and data
latency as the network grows.

The choice of the source node as coordinator for these
responsibilities is not an intuitive one. It is common
knowledge that ad hoc multicast protocols are distributed
algorithms, and any centralized component is to be avoided.
However, several factors suggested that this R-ODMRP
centralized mechanism could be successful:

A

mailto:golden@cs.uno.edu
mailto:lklos@uno.edu

 2

• An implicit centralized component, the data source, is
unavoidable for any multicast ad hoc communication
protocol. If the central source of data dies or is partitioned,
there will be no data to reliably deliver.

• ODMRP, while categorized as non-centralized, still relies
on the near-centralized two step process of join query/reply
for datapath establishment. In the extreme case (with
receivers existing only at the outer edge of a network), this
mechanism duplicates R-ODMRP’s mechanism of reliable
join query/reply, with the final step of nodes adjacent to
the source sending a packet back to the source removed.

Section 3 discusses related work, section 4 presents a brief
overview of ODMRP, section 5 describes R-ODMRP, and
section 6 describes the neighborhood creation algorithm in
detail. Section 7 presents a performance evaluation of R-
ODMRP, giving a detailed description of the packet
overhead for each phase of the protocol. Finally, section 8
covers future work, and section 9 concludes the paper.

III. RELATED WORK
Multicast reliability in ad hoc networks is a relatively new

area of research, with results appearing in the recent years.
Mechanisms from protocols can be broken down into three
categories: Congestion Control mechanisms such as RALM,
Forward Error Correction mechanisms such as Packet Erasure
Recovery, and Data Packet Retransmission mechanisms such
as RMA, Anonymous Gossip and Hyperflooding.

RALM[10] is a reliability protocol that achieves a higher
data delivery ratio by enforcing error and congestion control
similar to TCP. Reliable data delivery is guaranteed to one
group member at a time, in round-robin fashon. This is
accomplished by requiring the source to select a neighbor to
transmit the data to. The neighbor will reply with either a
positive ACK, showing the data was successfully received, or
a negative NACK, requesting retransmission of missing data.
This feedback from the neighbor is also used to adjust the
sources window size. This window increases linearly, but if
losses begin to occur it is halved. In this approach decreased
throughput is traded off for increased reliability. Another
downside is that even with congestion control, dropped
packets are resent from the source rather than locally, creating
greater network overhead from both the receiver NACK and
the source retransmit.

Packet Erasure Recovery [9] uses error correction codes to
provide reliability. Data packets are encoded and split into
pieces, and these pieces are then transmitted to receivers. If a
certain number of packet pieces arrive at a receiver, the data
packet is correctly reassembled and processed. The downside
of this approach is that forward error correction work best
when loss rates are predictable. In ad hoc networks, worst case
behavior for a node to drop packets is unpredictable: a node
may go out of range of the network and stay out of range.

RMA [5] is a reliable ad hoc multicast protocol that
assumes sources know the Ids of all receivers in the network,
and ensures they receive all data packets by recording positive
ACKS from all receivers. Retransmissions from the source
provide reliability. Stable links are given preference by using

the routing metric of the expected lifetime of a link. A
downside of this approach is that all receivers sending ACKs
back to the source makes scalability of the protocol
questionable, due to ACK implosions.

Anonymous Gossip[3] allows for randomly selected pairs
of group nodes exchanging information on received and lost
packets. A node missing data packets will periodically send a
gossip request, containing data on lost packets, sequence
number of next expected packet and source and group address,
to a random neighbor node. If the neighbor node is a group
member, it unicasts a reply back to the initiator, otherwise it
randomly selects a neighbor to forward the message to. The
multicast protocol in use must provide nodes with hopcounts
to their nearest neighbors, to accomplish this. An unavoidable
downside of this approach is that the increased network traffic
created by the protocol negatively impacts the data loss the
protocol attempts to correct. Also, given that request / replies
occur between random nodes, this is a best effort technique.

Hyper flooding [8] is an adaptive technique using flooding
as the base protocol, with modifications to prevent loops.
Nodes record neighbors by listening to and sending hello
messages. Received data packets are stored, and rebroadcasts
of these data packets occur when a packet is received from a
node that is not on the neighbor list, or when receiving a hello
message from a new node. In these cases, all packets in the
data packet cache are retransmitted. The downside of this
approach is a far greater amount of network overhead, and the
large amount of storage required at each node.

IV. ODMRP OVERVIEW
ODMRP[6] is a mesh-based on-demand ad hoc protocol for

group communication. It performs scoped flooding of data
packets to all group members by establishing a ‘forwarding
group’ of network nodes between a source and group
members. Route refreshes update the broken links arising
from node mobility or resource changes. Route setup and
refresh each consist of two phases: Request and Reply.

A. Route setup - Request phase
When a source has multicast data to send but no knowledge

of receivers, it builds a “Join Query” packet, adds its IP
address, and broadcasts it. Each node receiving the Join Query
will store the source IP address and packet ID, add the IP
addresses of the upstream node and originating source to its
routing table, add its own IP address into the last hop IP
address field, and rebroadcast it downstream. The Join Query
floods the network, reaching all receivers.

B. Route setup - Reply Phase
 A group member, upon receiving a Join Query, completes
the processing described above for the Join Query, then
initiates a “Join Reply” packet once the multicast route is
selected. The receiver node adds all source and next hop IP
addresses for the group from its routing table, adds its own IP
address into the previous hop field, and broadcasts the Join
Reply packet upstream. Each neighbor node receiving this
packet checks the set of next hop IP addresses. If a next hop
IP address matches the neighbor node’s own, the node is on
the forwarding path between source and receiver, and is part

 3

of the forwarding group. The node sets its Forwarding Group
flag, looks into its own routing table entries for the group ID
and builds a Join Reply packet to broadcast upstream.

C. Forwarding Data and Maintenance
 When a node receives a multicast data packet, it checks for
duplicates, then checks its Forwarding Group flag. If the flag
is set, the node is a forwarding group member, and will
rebroadcast the packet to its neighbors.

Periodically, the source will refresh routes with another Join
Query. All forwarding group members will then be reset
according to the new network topology. Group membership is
preserved in a soft state. Once a source has no data to
multicast, it stops sending periodic Join Query packets. All
forwarding nodes will then eventually timeout and revert to
non-forwarding status for that source. If a receiver wants to
leave the group it stops sending Join Reply packets.

D. Unicast Functionality
Using the same Join Query/Join Reply protocol with a

unicast IP address as the destination, a unicast sender can
discover a route to a unicast receiver. Since duplicate Join
Query packets are dropped (based on source IP address and
data packet sequence number), the route created by unicast
operation is a single path.

E. ODMRP Data Structures
Following are the standard data structures of ODMRP.

• Message Cache: When a node receives a Join Request or
data, it stores the source ID, sequence number and group
address of the packet in this cache to detect duplicates.
This cache is timed out in Round Robin fashion.

• Member Table: This table holds the multicast address and
source node address combination that the current node is a
receiver or forwarder for. An expiration time variable is in
the table in order to expire stale entries.

• Forwarding Group Table: This table holds the multicast
addresses and expiration times for all multicast groups for
which the current node is a forwarding group member.

• Routing Table: This table holds the multicast and source
addresses for all multicast senders the current node is a
receiver for, along with the next hop (upstream) address
on the path to the source. This next hop address is used as
the destination for Join Reply packets from the current
node.

V. RELIABLE ODMRP
The technique outlined here allows each source a means to

work with the two parameters of reliability and overhead cost,
moving the reliability ratio up or down dynamically, over a
single multicast session, if desired.

A. Overview
In R-ODMRP the responsibility for data storage and

retransmit is assigned to all receivers of the multicast group,
with the source of each data stream coordinating
responsibilities. All group members are divided up by the
source into sets of local neighborhoods. The source sets the
number of nodes per neighborhood, with the option of

determining the node’s storage overhead. With each
neighborhood member storing a portion of the data packets,
each local neighborhood stores a distributed “sliding window”
of all transmitted data packets. Nodes Nacking missing
packets will be answered by neighbors unicasting replies.

B. Packet Storage
In R-ODMRP, When a source initially sends out a Join

Query, it becomes a Reliable Join Query (RJQuery) packet.
The RJQuery packet has a timeout value attached. Once the
RJQuery packet is sent, each node receiving it (whether a
receiver node or not) will decrement this timer value by a
preconfigured “two hop time” before sending the RJQuery
downstream. After the RJQuery timer expires at each node,
each receiver node will send a Reliable Join Reply (RJReply)
back upstream. If a node with an expiring timer is not a
receiver, it will send an RJReply only if it receives other
RJReplies from downstream.

Each RJReply contains a 2D table, known as the Network
Datapath table. When a node (receiver node or not) receives
RJReplies from downstream nodes, it stores their Network
Datapath table as a block in its own table sorted relative to
other received blocks with the topmost block having the
longest datapath. On timer expiration, just before the table is
sent upstream in an RJReply, each table entry is shifted such
that entry (x, y) becomes entry (x, y + 1), emptying the
leftmost column, column 0. The node stores an entry for itself
in entry (0,0) containing its id, branch count (the number of
RJReplies received from downstream), and receiver status,
and then forwards the table upstream in its own RJReply.

The end result of the RJQuery/RJReply phase is that the
source obtains a full positional listing of all receivers and
forwarding group members in the network. RJQuery/Reply
operations occur periodically, but at a lower frequency than
the standard Join Query/Reply operation.

The source will then set a number for the “nodes per
neighborhood” count, and, with the Network Datapath table as
input, partition all receiver nodes into local neighborhoods
using its “Source Neighborhood” Algorithm. The source then
assigns data packet storage responsibilities such that the set of
nodes within any given neighborhood will store the full set of
data packets in sliding window fashion.

On the next multicast data packet after a Reliable Join
Query, the source piggybacks a table defining the range of
packet sequence numbers each receiver in each neighborhood
is responsible for storing. Each receiver then begins storing its
share of data packets. This recovery scheme does not depend
on which node stores the packets, only that they are stored
somewhere in each neighborhood.
 As nodes leave the group, their storage responsibilities are
reassigned on new RJQuery/Reply rounds. However, as more
and more nodes join over time, more neighborhoods are
created and duplicate storage responsibilities will be assigned.
The individual neighborhoods storing the duplicate packets
will become smaller and smaller, relative to the overall
network. Additionally, the source can reassign neighborhood
size and data packet storage responsibilities on any
RJQuery/RJReply round, dynamically adjusting reliability
versus overhead over the course of a multicast.

 4

C. Packet Retransmission
The second responsibility, data packet retransmission, will

be initiated by a receiver node noticing a gap in data packets.
It will broadcast a Resend Request packet to its local
neighborhood, with a local time-to-live scope, listing all
packets needed by sequence number. The requestor will give
its ID for unicast replies. Upon receiving the packet, neighbor
nodes will check their storage for the requested sequence
numbers and unicast found data packets back along a single
path. If the requesting node receives an incomplete reply or no
reply at all, it will retain all gap sequence numbers, sending
them out in its next Resend Request.

D. R-ODMRP Structures
These structures are in packets sent to other nodes:
• Network Datapath Table: This table holds the current

node’s network positional information (node id, branch
count and receiver status), accumulated from nodes on all
downstream datapaths. This table is inserted into an
RJReply packet, just before sending. The bandwidth
requirements for a single node entry in the 2D Network
Datapath Table in this implementation is 2 ½ bytes, based
on a 15 bit node id, a 4 bit branch count (holding a
maximum of 15 branches from a node), and a 1 bit boolean
receiver status. A single 64k data packet will hold data
describing approximately 26,200 nodes. As yet, it is unclear
what the maximum feasible size of ad hoc networks will be,
but one line of thinking holds them to be smaller than this,
such as an informal gathering of conference attendees, or a
lone group of rescuers.

• Data Packet Gap List: This list contains sequence numbers
of all data packets that have not been received by the local
node. The bandwidth requirements used in this
implementation were 2 bytes per packet id number.

• Storage Responsibility Table: This table holds data packet
storage responsibilities for all receiver nodes in the network.
It is multicast out by the source to all receivers after the
source neighborhood algorithm completes. The bandwidth
requirements for a single receiver node entry in the 2D
Storage Responsibility Table in this implementation is (2 +
1/n) bytes, with n being the ‘nodes per neighborhood’
count. For a ‘nodes per neighborhood’ count of 3, a Storage
Responsibility Table handling the node count of 26,200
described above will fit into a 64k data packet for the worst
case, where every network node is a receiver.

These structures are needed for a node’s internal processing:
• ResendRequestReply Cache: This table holds data packets a

node is responsible for storing. Additionally, it holds
snooped data packets carried in resend replies forwarded by
a node. To identify each data packet, the group address, id
of the source node, address of the request originator and
previous hop forwarder, originators sequence number of the
request, and the id of the replier are all stored. Entries are
aged out in Round Robin fashion. All replies are stored so
that if any nearby receiver node sends a request for the
packet in the future, it can be answered locally. The sending
of resend requests for different nodes are staggered by a
random time, in order to make this likely to happen. If a

local group of nodes all miss a data packet but get the next
one in sequence, one node will send out a request for a data
packet while others wait. By the time others begin to initiate
a request for the same packet, they will likely find it stored
in their cache already and stop the send process.

• Data Packet Sequencer: This list holds recently received
data packet sequence numbers along with their received
time, for a given source. When a sequence number is
received causing a gap, and over two seconds has elapsed
since its reception, the missing number is listed as a gap in
the received sequence. The data packet sequencer list is
added to from the tail, and the head is periodically trimmed.
Trimming occurs either periodically when received data
packets are all in sequence, or when gaps have been
identified and loaded to the gaps list.

VI. R-ODMRP NEIGHBORHOOD CREATION

A. Overview of Neighborhood Building
As the group of receivers grows in size, neighborhood

partitions and node data storage responsibilities are
dynamically reallocated by the source, allowing partitioned
neighborhoods to be composed of a diminishing percentage
of network receiver nodes that are more closely grouped. As
the number of receiver nodes and neighborhoods grow in an
ad hoc network, Resend Requests and replies will travel
fewer hops, reducing overall network traffic. Scalability is
built in to the data storage and retransmit process.

B. R-ODMRP Neighborhood Building Parameters:
A set of parameters govern R-ODMRP Neighborhood
Building operations. Some variables are simply inputs to the
Neighborhood Building algorithm, while others are
configured by the source. In initial simulations they are set to
a fixed amount, but will be varied to study various network
conditions in future work. They are described below:
• Size of a node’s data packet storage buffer (NodSiz):It is

assumed that all nodes in the network will be
homogenous, and all will have the same fixed amount of
storage space to devote to reliable communication.

• Amount of network data produced per sec (AmtSec):
Fixed based on a single source generating a set number of
fixed size packets per second.

• Number of seconds of data to store (NbrSec): Set to a
value greater than the average time a node going out of
range stays disconnected from the network.

• Total storage capacity for a neighborhood(TotStg):
Set by the formula: TotStg = AmtSec * NbrSec

• Number of nodes per neighborhood (NbrNod):
Set by the formula: NbrNod = TotStg / NodSiz

Following are R-ODMRP timing parameters:
• Source timeout after RJQuery, before processing

RJReplies (SrcTimOut): Set based on the maximum
simulation time for the first RJQuery to travel to the
farthest receiver, and the RJReply to return to the source.

• Time for a packet to travel one hop and back
(TwoHopTim):Used to set timers for Resend Requests,

 5

and to determine the amount to subtract from the
SrcTimOut remainder at each downstream node.

C. Neighborhood Building Algorithm:
The algorithm takes as input the Network Datapath Table and
uses the NbrNod variable to partition the network into
neighborhoods. Then it builds a table assigning each
neighborhood node packet storage responsibilities, and a
maximum hop count between nodes for each neighborhood.
It inserts this table into the next JQuery packet before
broadcasting it. The algorithm works as follows:
1. First, a pass is done through the Network Datapath Table,

identifying the number of receiver nodes in each row (data
path), summing to find the total number of receivers. The
total number of receivers divided by NbrNod will give the
number of neighborhoods the receivers will be partitioned
into, as well as a remainder. The source keeps track of both
the NbrNbrhds variable and the RmdrNbrhds variable.

2. Next, construction of the Storage Responsibility Table
begins. Starting with the receiver at the far right end of the
top row in the array, processing moves left, the
hopcount is tracked, and receivers are added until a
neighborhood is completed or a branch node is reached.
Once a full neighborhood of receivers is identified, the
source loads a row in its Storage Responsibility Table and
records the maximum spanning hop count.

3. Upon reaching a branch node, if a full neighborhood is
not yet built, the algorithm loads the branch node position
on a stack, and steps down to the end of the next row. It
continues to build the current neighborhood from the
furthest node from the source forward, tracking hop count.
Similarly, if a branch node is reached in this row,
processing steps down another row, but never moving
outside a block. Once processing again reaches the node
originally stepped down to on a given row, the stack node
is popped and processing continues with it.

4. Once the first block is complete, the algorithm moves on
to the next. The algorithm continues on in this manner until
all receiver nodes within each block are either partitioned
into a neighborhood or the count of remaining receiver
nodes within each block is less than NbrNod.

5. Remaining receivers in all blocks are closest to the
source. They are partitioned in the following way:
• Unpartitioned nodes are sorted from bottom to top, with

associated hopcount to source retained.
• Selection of nodes for a new neighborhood begins at the

bottom, and works sequentially to the top.
• Hopcount per neighborhood is the sum of the two

greatest numbers from either the max node hopcounts
to the source from nodes in different blocks, or the max
hopcount between two nodes in one block.

This algorithm will result in a table of partitioned
neighborhoods, each with a spanning hopcount. Storage
responsibilities are assigned by assigning a data packet
sequence number range to each column in the table. This
table is then put into the next JQuery packet and broadcast
out to all receivers. Each receiver, upon receiving this
packet, will learn its storage responsibilities and begin
storing packets in a circular buffer.

D. Example of Neighborhood Building
Figure 1 shows a diagram of an example ad hoc network.
The bold outlined node is the source, dotted outlined nodes
are forwarding nodes and solid outlined nodes are receivers.
Figure 2 shows example node network datapath tables, sent
from the listed nodes to those upstream. Eventually the
source will receive four RJReply Network Datapath Tables,
sort them by block, and build a Network Datapath Table
representing the composition of the overall ad hoc network.

S

R15

16 14

R17

R18
R13

R9

R10

86

R4

R7

R5

R3

2

R1

R12

11

Figure 1: Example Ad Hoc Network.

Each entry in this Network Datapath Table is a structure with
three elements: NodeID: the node’s individual id,
Branch_Count: the number of downstream branches (table

R3 R4 2 R3 R4 R1 6 R7 8 R9
R5 R10

2 R3 R4
R5

Figure 2: Example Network Datapath Tables (R3, 2 and R1)

rows) extending from the node, and Receiver_Status: a
Boolean indicating receiver/forwarder status. The Network
Datapath Table constructed by the source is shown in Figure
3. This table has four blocks, built from four RJReplies.

S F R1 R 6 F R7 R 8 F R9 R
4 2 1 1 2

R10 R
0

2 F R3 R R4 R
2 1 0

R5 R
0

14 F 16 F R17 R
2 2 0

R18 R
0

R15 R
0

11 F R12 R
1 0 Key:

R13 R Node Id Rcvr/Fwdr
0 Branch Ct

0

Figure 3: The Source’s full Network Datapath table.

The source then begins the task of partitioning this table
into neighborhoods. If the node count per neighborhood
(NbrNod) is three, for example, the partitioning would
happen in the following manner:
• R9 is selected for the first neighborhood. Node 8, a branch

node, is placed on the stack, and R10 is added. Node 8 is
popped, and R7 completes the neighborhood. The
neighborhood’s max hop count is set to 2.

• R1 is reached and added to neighborhood 2. R1 is seen as
a branch, placed on the stack, and nodes R4 and R3 are

 6

added to neighborhood 2. The max hop count is set to 3,
and R5 is a block remainder.

• Next, R17 is selected as the first node of neighborhood 3.
16 is placed on the stack and R18 is added to the
neighborhood. Then node 14 is placed on the stack and
R15 is added to the neighborhood, which is set to have a
max hop count of 3.

• Now the algorithm shifts to phase two. The resorted array
of remainder nodes is shown in Figure 4. R1 has already
been partitioned into a neighborhood, so a flag is set for
the entry to indicate this.

S F R1 R 2 F R5 R

11 F R12 R
R13 R

Figure 4: Network Datapath Table Remainders

• Starting with shortest hopcount to the source first, this

array is traversed bottom up. First, the algorithm selects
R13 for neighborhood 4. Next, R12 is selected for the
neighborhood, and finally R5 is selected. The max
hopcount is 5.

• The algorithm completes with the Storage Responsibility
Table shown in Figure 5. For every 100 data packets sent
from the source, nodes in the first column will store packets
1-33, nodes in the second will store packets 34-66 and
nodes in the third will store packets 67-100.

Pkts 1-33 Pkts 34-66 Pkts 67-100 Nbrhd Hopct

R8 R10 R7 2
R1 R4 R3 3

R17 R18 R15 3
R13 R12 R5 5

Figure 5: Node Packet Storage Responsibility Table.

VII. PROTOCOL PERFORMANCE EVALUATION
R-ODMRP was implemented in the ns-2 network simulator

[4], developed by the University of California, Berkeley, and
the VINT project, with Carnegie Mellon’s Monarch Project
mobile and wireless ns-2 extensions[11] incorporated. The
ns-2 simulator is commonly used in networking research. [2]
provides a full description of the software layers and the
IEEE 802.11 MAC protocol used in these simulations. The
USC/ISI ns-2 implementation of ODMRP[12] was also used.

A. Simulation Details
The ODMRP and R-ODMRP simulations all executed with

identical randomly generated baselines of network traffic and
node movement files to more accurately compare
performance. This baseline consisted of five node movement
scenarios and six traffic pattern scenarios. All scenarios
established fifty mobile nodes with a single node as multicast
source within a 1000m x 1000m area. The radio propagation
range for each node was 250 meters, and the channel capacity
was 2 Mbits/sec. Each simulation executed for 600 seconds of
simulated time. Once all nodes joined the group the multicast
source began transmission of 512 byte packets with a
constant bit rate of 3 packets per second. The traffic pattern

scenarios had 25, 30, 35, 40, 45 and 49 receiver nodes
respectively.

30 simulation runs were executed each for ODMRP and R-
ODMRP. A total of 60 simulations were performed. This
baseline was chosen because simulations [7] have shown that
ODMRP performs best in conditions of relatively good
network connectivity and low network traffic load and speed,
and any protocol with the goal of increasing its reliability
would have to outperform standard ODMRP under these
conditions. The reliability technique proposed in this paper
likely has its greatest advantages in sparse networks with
frequent longer partitions, however.

For ODMRP and R-ODMRP, parameters were set to 3
seconds for the Join Query flood interval and 9 seconds for
the forwarding state timout, the values used by ODMRP’s
creators in their simulation studies. R-ODMRP sets a flag in
every fourth Join Query packet, turning it into a Reliable Join
Query packet. The node count per neighborhood for R-
ODMRP was set at 3, and all nodes were preset to store a
maximum of 500 data packets, in Round Robin fashion.

B. Initial Simulation Experiments
Beginning experiments lead to some modifications to the

basic protocol of R-ODMRP that produced better end results.
Originally, the time-to-live hopcount for a resend request
packet was set to the maximum distance between nodes within
a given neighborhood, but this produced relatively poor
results. Data packets that would have been correctly delivered
under ODMRP were dropped due to network traffic
contention with the Resend Requests, causing the R-ODMRP
portion of the protocol to work that much harder to try to fill
the gaps, leading to further network contention. In the end, for
these simulations of high network connectivity, a TTL of 1
gave best results for Resend Request packets. A consequence
of this was that data packets that were undelivered to a group
of receiver nodes tended to “bubble” across nodes over many
cycles, increasing latency for those packets.

C. Simulation Results
Initial results for Total Data Packets vs. Delivered Data
Packets (Packet Delivery Ratio) were encouraging. Table 1
shows that when ODMRP ran alone Packet Delivery Ratio
varied between 92.8% and 93.8% for the thirty simulations,
given the same number of network nodes and an increasing
percentage of receivers.

Table 1: Packet Delivery Ratio Table 2: Control Overhead

When R-ODMRP ran, the ODMRP portion operated between
1% and 1 ½% worse than its standalone counterpart, due to
the added network contention, but the reliability portion

 7

increased Packet Delivery Ratio by approximately 4% overall,
to between 97.1% and 97.7%.

Other metrics showed the tradeoff for this increased
reliability, however. The Ratio of Data and Control Packets
vs. Delivered Data Packet (Control Overhead), shown in
Table 2 reflects a consistent and unavoidable increase for R-
ODMRP. The differential in this metric represents greater
channel contention, working against the basic goal of reliable
data delivery. Though an increase must exist, since R-
ODMRP uses control packets, the increase shown for R-
ODMRP scales similarly to that of ODMRP, rising a similar
percentage as the number of receivers in the 50 node network
declines.

Data Packets Forwarded vs. Data Packets Delivered
(Forwarding Overhead), shown in Table 3, also shows an
unavoidable increase for R-ODMRP. The differential in this
metric also represents greater channel contention, working
against the basic goal of reliable data delivery. An increase
here must exist, given the store and retransmit mechanism, but
the differential between ODMRP and R-ODMRP increases
with an increase in receiver count. The mechanism used for
Resend Request/Reply will be modified to increase scalability
of this portion of R-ODMRP.

Table 3: Data Forwarding Overhead

The data delivery latency of the two protocols shows the
greatest differential, however. While the average latency of
ODMRP, and the ODMRP portion of R-ODMRP averaged
about 10ms across all receiver counts, the extra packets
delivered by the Resend Request/Reply portion tended to have
a latency of seconds, due to several factors. One is the fact
that two seconds elapse after a gap is noticed and a Resend
Reply packet is sent. Another is that a random delay before
sending was added to allow snooping of other node’s Replies
before sending a request. A third is the mechanism used to
trigger requests, which causes data to “bubble” across nodes.

The competing metrics involved in enhancing reliability
for ODMRP have been clarified as a result of this work. Four
central factors balance against each other: Packet Delivery
Ratio (“Reliability”), Ratio of Data and Control Packets per
Delivered Data Packet (“Control Overhead”), Forwarding
Efficiency (“Forwarding Overhead”) and Data Packet
Delivery Latency to all Receivers (“Latency”). Comparing
the basic ad hoc multicast protocol of ODMRP to R-
ODMRP, overall latency tends to be lower, reliability is
based on the basic protocol’s best-effort delivery technique,
and network traffic overhead is lower. When the store and
retransmit reliability components are added to ODMRP,
reliability increases, overall latency increases and network

traffic overhead increases, due to the control and forwarding
mechanisms. A successful reliability component will, under
various network conditions, always increase reliability (by a
varying amount, depending on the scenario and the strength
of the reliability component), increase overhead by an
‘acceptable’ amount (acceptable meaning low enough so that
the extra overhead causes minimal additional network
contention resulting in minimal additional dropped data
packets), and increase data packet latency minimally as
possible. Of the three competing factors, the two overhead
metrics are more tightly linked to increased reliability, and
latency is the least linked metric.

In most multicast ad hoc protocols, reliable packet delivery
falls off sharply as network node density becomes more
sparse, with fewer links between nodes. It is expected that
the sparser the network, the more successful a store and
retransmit reliability component such as R-ODMRP will be
in achieving its goals. In sparse networks increased network
traffic overhead required by the reliability component will
have a lesser negative effect, since contention is less of an
issue. It is expected that latency will be affected to a greater
degree, since packets that would have been undelivered will
be delivered much later, when a link is finally obtained, but
latency will be due to the unavailability of a link rather than
the mechanisms of the reliability component.

D. Protocol Results by Phase
Statistics were gathered for the normalized packet counts for
each phase of the ODMRP portion and the reliability portion
of R-ODMRP. Figure 6 reflects the normalized packet counts

Normalized Packet Counts - ODMRP Alone

0

10000

20000

30000
40000

50000

60000

70000

80000

50
n2

5r

50
n3

0r

50
n3

5r

50
n4

0r

50
n4

5r

50
n4

9r

Network Density

Pa
ck

et
 C

ou
nt

fw d jqueries

fw d jreplies

fw d data pkts

Figure 6: Normalized Packet counts for ODMRP.

for all phases of ODMRP. Here it can be seen that the number
of forwarded JQuery packets holds flat across the 6 scenarios,
while the forwarded data packet count rises gradually. This
makes sense, because as more receivers are added, data
packets will at times be forwarded to further endpoints, given
the same network. The JReply packet count shows a sharper
increase, however. This portion of ODMRP would be the first
to investigate in order to raise ODMRP’s overall efficiency.
 Figure 7 shows the corresponding normalized packet counts
for the phases of R-ODMRP added in over the baseline series
of runs. Here it can be seen that the number of RJQueries

 8

holds flat. This is expected, since the ODMRP protocol is
reused for this component. The count of RJReplies rises very
gradually, almost holding flat, as the number of senders is
increased. This count reflects the new timeout mechanism for
gathering all downstream RJReplies before initiating one
upstream. This metric shows that ODMRP’s network
contention due to JReply traffic can be reduced by adopting
the R-ODMRP mechanism. This would increase ODMRP’s
scalability and efficiency by reducing control overhead
network traffic. The R-ODMRP counts for Resend Requests
and Resend Replies rise at a similar steep pace relative to the
other protocol components, however. The Resend
Request/Reply mechanism would be the first to look at in
terms of increasing the efficiency of the overall R-ODMRP
protocol. A technique to unicast out a Resend Request should
help reduce this packet count. This will have the secondary
effect of reducing the Resend Reply count.

Normalized Packet Counts - ODMRP & RODMRP
Protocols

0
10000
20000
30000
40000
50000
60000
70000
80000

50
n2

5r

50
n3

0r

50
n3

5r

50
n4

0r

50
n4

5r

50
n4

9r

Network Density

Pa
ck

et
 C

ou
nt fw d jqueries

fw d jreplies

fw d rjqueries

fw d rjreplies

fw d resend reqs

fw d resend replies

fw d data pkts

Figure 7: Normalized Packet counts for Both.

VIII. FUTURE WORK
 Near term goals include economizing the Resend Request
/Reply mechanism for dense networks. Examination of
transmission and reception simulation detail data will provide
information that will help close the gap to full packet delivery.
 Other areas for future work would be to examine other
network scenario baselines. For example, sparse networks
would seem to be an area where R-ODMRP could operate to
greatest advantage. A new mechanism for Resend Requests
must be developed for this scenario, and merged with the
existing mechanism to work across cases.

IX. CONCLUSIONS
 This paper described R-ODMRP, a reliability protocol
added to ODMRP. R-ODMRP consists of operations to store
and retransmit sequenced data packets between receiver
nodes, with overall coordination by the source. R-ODMRP
has been implemented in ns-2 and run against a baseline of a
dense network with increasing receiver count, ideal conditions
for the base ODMRP protocol. Results show that R-ODMRP
does outperform ODMRP under these conditions in terms of
reliability, at an acceptable cost of an increase in routing
efficiency and forwarding efficiency. The data delivery

latency metric is expected to improve in future work, with fine
tuning on the Resend Request /Reply protocol phases.

REFERENCES
[1] K. Birman, “Building Secure and Reliable Network

Applications”, Manning Publishing Company, Greenwich,
CT, and Prentice Hall, 1997.

[2] J. Broch, D. Maltz, D. Johnson, Y. Hu and J. Jetcheva, “A
Performance Comparison of Multi-hop Wireless Ad Hoc
Network Routing Protocols”, Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile
Computing And Networking, Dallas, TX, October, 1998.

[3] R. Chandra, V. Ramasubramanian, K. Birman,
“Anonymous Gossip: Improving Multicast Reliability in
Mobile Ad-Hoc Networks”, Proceedings of the 21st
International Conference on Distributed Computing
Systems, Phoenix, Arizona, April, 2001.

[4] K. Fall, K. Varadhan, editors, “The ns Manual”, The
VINT Project, UC Berkeley, LBL, USC/ISI, and XEROX
PARC, April, 2002. Available at http://www-
isi.edu/nsnam/ns/.

[5] T. Gopalsamy, M. Singhal, D. Panda, P. Sadayappen, “A
Reliable Multicast Algorithm for Mobile Ad Hoc
Networks”, Proc. of the Dist. Cmptg Systems Workshops,
pp. 563-570, Vienna, Austria, July 2002.

[6] S.J. Lee, W. Su, M. Gerla, Internet Draft, “On-Demand
Multicast Routing Protocol (ODMRP) for Ad Hoc
Networks”, draft-ietf-manet-odmrp-02.txt, January, 2000.

[7] S.J. Lee, W. Su, J. Hsu, M. Gerla, R. Bagrodia, “A
Performance Comparison Study of Ad Hoc Wireless
Multicast Protocols”, Proceedings of IEEE INFOCOM
2000, Tel Aviv, Israel, March, 2000.

[8] K. Obraczka, G. Tsudik, K. Viswanath, “Pushing the
Limits of Multicast in Ad Hoc Networks”, Proceedings of
the 21st International Conference on Distributed
Computing Systems, Phoenix, Arizona, April, 2001.

[9] L. Shu, D. Poppe, “Assuring Message Delivery in Mobile
Ad Hoc Networks with Packet Erasure Recovery”,
Proceedings of the Distributed Computing Systems
Workshops, pp 14-19, Vienna, Austria, July, 2002.

[10] K. Tang, K. Obraczka, S.J. Lee, M. Gerla, “A Reliable
Congestion-Controlled Multicast Transport Protocol in
Multimedia Multi-hop Networks”, The 5th Int’l
Symposium on Wireless Personal Multimedia
Communications, pp 252-256, Hololulu, USA, October,
2002.

[11] “The CMU Monarch Projects wireless and mobility
extensions to ns”, The CMU Monarch Project, August,
1999. Available at http://www.monarch.cs.cmu.edu/.

[12] The USC/ISI ns-2 version of ODMRP, previously
available on Univ. of California website. Supported by
NSF’s NGE Program and the IMAHN Project. Copyright
1991-1997, Regents of the University of California.

http://www.monarch.cs.cmu.edu/

	INTRODUCTION
	Reliable Ad Hoc Group Communication
	Related Work
	ODMRP overview
	Route setup - Request phase
	Route setup - Reply Phase
	Forwarding Data and Maintenance
	Unicast Functionality
	ODMRP Data Structures

	Reliable ODMRP
	Overview
	Packet Storage
	Packet Retransmission
	R-ODMRP Structures

	R-ODMRP Neighborhood Creation
	Overview of Neighborhood Building
	R-ODMRP Neighborhood Building Parameters:
	Neighborhood Building Algorithm:
	Example of Neighborhood Building

	Protocol Performance Evaluation
	Simulation Details
	Initial Simulation Experiments
	Simulation Results
	Protocol Results by Phase

	Future Work
	Conclusions

