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Abstract—Service discovery is a widely researched topic in
wireless networks. Existing protocols have significant overhead
for service advertisement as well as service discovery, with many
messages being transmitted in the network. This high overhead is
not practical in resource-constrained wireless environments. We
propose a simple service discovery protocol that aims at reducing
the number of messages in the network while at the same time,
keeping the waiting time for services to a minimum. We evaluate
the performance of the protocol for a stationary wireless sensor
network. We use remote procedure calls to request a service
once it is discovered, which allows for richer and parameterized
interaction with the sensor.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are a group of nodes, dis-
tributed in an area, that communicate with each other to collect
information about the environment. The nodes are deployed in
large numbers, usually hundreds or thousands, and can either
have a fixed location or are randomly deployed [5]. They
sense environmental changes and report them to other nodes
over the network. These have been deployed for a variety of
applications including habitat monitoring, medical monitoring,
military surveillance, etc. [1], [2]. However, WSNs bring with
them a host of challenges. Unpredictable wireless links, power
constraints, memory constraints, and loss of individual nodes
are only a few of these challenges.

As sensor networks become more popular, new applications
that were previously unthought of are being developed. A flex-
ible architecture that supports interaction among sensors that
were originally deployed for different purposes will facilitate
future uses of sensors.

Sensor nodes collect information from other nodes. For a
dedicated application, this can be hard-coded into the ap-
plication. But to allow new applications to be run on these
sensor nodes, either from unanticipated interactions among
overlapping sensor networks or by the arrival of additional
wireless devices, some mechanism for finding sensors that
provide information is required. Traditionally, this is known
as service discovery.

Service discovery protocols are network protocols that allow
automatic detection of devices and services offered by these
devices on a computer network. Clients, the nodes that need
a service, perform a discovery step, which typically initiates
(limited) flooding of the network to discover nodes offering
appropriate services. In some cases, clients may directly seek

the needed services themselves; in others, they may contact
one or more service catalogs, which maintain directories of
available services. A discovery attempt generally classifies the
service by type and may optionally include requirements such
as a manufacturer, serial number, or other service attributes.
Once the service providing node is found, it is important to
ensure that the nodes can use the services efficiently. In this
paper, we describe our protocol for service discovery in wire-
less sensor networks, TinySDP, and our initial implementation
on TOSSIM, the simulator for TinyOS. An RPC [21] approach
for requesting a service is also presented. This provides a more
sophisticated interaction among the nodes.

II. RELATED WORK

Jini is a service discovery technology based on Java [3]. In
Jini, lookup services provide catalogs of available services to
clients. Upon initialization, Jini services register their avail-
ability by uploading proxy objects to one or more of these
lookup services. Once a client has contacted a lookup service,
it can search for interesting services and then download the
corresponding service proxy objects. Execution of methods in
a proxy object allows communication with the corresponding
service. However, Jini’s dependability on Java makes it un-
suitable for sensor networks.

SSDP provides a mechanism for HTTP clients and HTTP
resources to discover each other in a local area network. It
is used in Microsoft’s UPnP (Universal Plug and Play) [4]
architecture. When a service first comes online, it announces
its presence in the network by sending a multicast message.
All clients that hear this multicast cache the information.
Any client that comes online after this announcement can
discover the desired service by sending out a discovery request.
As a result, messages are sent only when an event occurs.
This event-driven approach, however, makes the protocol
more complex. SSDP is based on HTTP, with large headers
present in messages. Transmission of such large messages is
inappropriate in sensor networks.

DEAPspace [18] is a decentralized discovery algorithm
targeted at wireless ad-hoc single-hop networks. It uses a pure
push-based approach for service discovery. The time is slotted
into intervals and service information is broadcast during these
intervals. The broadcasts are single-hop and are not transmitted
beyond the local transmission range of the device in question.
This is not suitable for general wireless sensor networks.
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Gossip Based Discovery [17] is a service discovery protocol
for mobile ad-hoc networks. A device collects information
about services in the network by listening to all the service
advertisement, request, and response messages in the network.
A service registry on each device stores local services as well
as services offered by others.

PDP [16] concentrates on service discovery in ad-hoc
networks, where mobile devices communicate via wireless
links without any fixed infrastructure. It is a fully distributed
protocol that uses both push and pull techniques. In PDP, a
device announces its services only when other devices request
the services. The services in the PDP messages are defined
using a URL scheme similar to the one used in the Service
Location Protocol (SLP) [19] and transmitted using UDP or
TCP. This introduces too much overhead to implement these
protocols on wireless sensor nodes.

In the post-query model, each server posts its service(s)
to a set of nodes according to the posting protocol and each
client queries its desired services according to the querying
protocol. A pair of Posting and Querying protocols forms a
post-query protocol. In order to adapt to topological changes
over time in an ad hoc network, these protocols are executed in
rounds. Barbeau and Kranakis [14] propose various post-query
strategies. These include:
• greedy; all nodes post and query all other nodes.
• incremental; all servers and clients post to and query. A

small set of nodes in the first round and increase the size
of these sets in subsequent rounds.

• uniform memoryless; servers post to a random set of
nodes and clients query a random set of all nodes.

• uniform with memory; in each round a new set of nodes
are posted to or queried.

Even though the above strategies work well and result in
nodes successfully finding the services they need, all of them
tend to consume high bandwidth. Multiple rounds in each
strategy tend to consume a lot of resources in terms of power,
bandwidth of the network, and memory in individual nodes.

May et al. present the design and implementation of a Re-
mote Procedural Call (RPC) abstraction for nesC and TinyOS
[22]. They present a programming abstraction to hide the com-
plexities of inter-node communication both within and across
a single-hop neighborhood. To achieve this they developed a
set of nesC language extensions, a set of designer tools, and
an operating system service for TinyOS. For discovery and
binding, the designer replaces the destination node’s ID with
a special constant. The binding is persistent and future requests
are sent to the same node. The proposed design is generic to
wireless sensor networks; it does not cater to a lot of issues a
service discovery protocol may have. Persistent bindings are
used, which may not be ideal for wireless sensor networks.

Marionette [20] is a tool suite released by Whitehouse et
al. using RPC for interactive development and debugging of
wireless embedded networks. Using the Marionette architec-
ture, embedded applications seamlessly span the PC and the
sensor node. This is a tool for software development, not for
run-time collaboration among sensor nodes.

Though many service discovery protocols have been pro-
posed, these protocols are either more suitable for mobile ad-

hoc networks (MANETs) or consume a lot of resources. The
existing RPC based protocols either do not support inter-node
communication or do not take into account all the requirements
of a service discovery protocol. Instead of attempting to adapt
an existing protocol, we have started with a basic list of needed
functionality and, with the resource limitations of sensor nodes
in mind, created a custom, extensible protocol for service
discovery in sensor networks. We have also included an RPC
component which allows a parameterized and more expressive
communication among the nodes.

III. APPLICATION SCENARIO

To illustrate the importance of service discovery protocols
for wireless sensors, consider a network of nodes deployed in
a forest to gather environmental information. A new wireless
device enters this network to collect information. The types
of information that the device is interested in collecting could
differ based on the interests of the user. It could look for
anything, varying from the number of sightings of a par-
ticular animal, the highest temperature recorded so far, or
the humidity level in a particular area, etc. The flexibility
to look for any desired service comes from standardization
of the service discovery framework. This potentially saves
the developers a significant amount of time over developing
dedicated client/server systems for each application.

As another example, consider a sensor network deployed in
a building. The thermal sensors can be accessed to provide
consistent temperature control to determine hot spots during
a fire. This information could be relayed to firefighters to aid
in extinguishing the fire, and to occupants to guide them out
of the building or to safer locations within the building.

For some applications, there are circumstances where a little
more ”expressiveness” is required when communicating with a
discovered sensor. For instance, consider the above example of
nodes deployed in a forest. A user may need the temperature
for a specific time, e.g., 3 am on March 11, 2008 or might
be interested in changing the interval at which specific data is
provided. An RPC-based service discovery protocol makes it
easy to set parameters for such specific information.

IV. TINY SDP

The Tiny Service Discovery Protocol defines a packet size
of 29 bytes. We have a 15-byte application header and 14 bytes
of data in our packet. As depicted in Figure 1, the protocol
header carries the basic information about the packet. The
packet type specifies whether the packet is an advertisement,
request, reply, or acknowledgement. With an 8-bit field, we
can define 256 different packet types. The 16-bit service type
field specifies the service whose information the packet is
carrying. However, some standardization of the service values
is required to ensure that a particular value means the same
service to all the nodes. For instance, if we define value 310
for temperature then this value will remain the same for every
application. Some of these values are for defining standardized
service types, leaving the rest for application-specific services.
For generic message exchanges not concerning any specific
service, the protocol requires a service type of zero.
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Fig. 1. TinySDP Packet Format

Every packet has a hop count (the time-to-live field). When
hop count reaches zero, the packet is discarded. Limiting the
lifetime of a packet using the hop count prevents old packets
from moving around in the network.

Services are grouped together using scopes. A scope is
a set of sensors making up an administrative group. It can
indicate a group of nodes within a particular location, within
an administrative domain, or grouped by some other category.
For instance, we may want to control the rights of nodes by
allowing them access to services on some nodes and not on
others. If we want a node to look for services in all domains,
we use a scope of zero.

A. Service Advertisement

Sensor nodes advertise their services at network startup or
when a new node enters an already existing network. The
nodes can also periodically retransmit their advertisements.
The source node initiates the advertisement. It fills in all the
information in the packet including the service type that it is
advertising. It also includes the current time and the time of
service expiration. This expiry time is usually wired into the
nodes when they are introduced into the network. This is the
time duration for which the node will stay in the network.

B. Service Request

A node that needs to find a service in a network sends
out a service request packet. This packet includes service
requirements, time constraints, or other QoS parameters. As
shown in Figure 2, the packet includes requirements about how
long it needs a service, and with what frequency. In addition,
we include ten bytes at the end of the packet for any special
requests. For instance, consider a sensor network deployed in
a factory to monitor industrial processes. A special request can
look for a sensor that measures the amount of a certain harmful
chemical or byproduct. In another case, a node monitoring
temperature changes in a forest might send a request checking
if the temperature has exceeded a certain threshold (indicating
the possibility of a fire). This inclusion of special requests
can help further reduce information exchange, thus controlling
unnecessary traffic in the network.

Fig. 2. TinySDP service request

C. Service Reply

When a node receives a service request, it checks if it meets
the service requirements of the requesting node. If it meets the
stated requirements, it will reply. The most important attribute
values for the service (as defined in the standardization process
for a service type) are piggybacked on the service reply
(see Figure 3). This piggybacking of attributes is particularly
useful when a node needs a one-time value for a service and
potentially saves a significant amount of communication, by
eliminating the need to perform attribute requests or RPC calls.

Fig. 3. TinySDP service reply

D. Service Acknowledgement

TinySDP provides an acknowledgement packet to allow
retransmissions when necessary. If a request packet reaches
its destination without finding the service, the destination node
sends back a negative acknowledgement to the source node.
Upon receiving this negative acknowledgement, if the source
node hasn’t already received a reply from another node, it
retransmits in another direction.

E. Attribute Request/Reply

TinySDP supports two types of interactions with services
– attribute exchange and RPC. To request attribute values,
the client sends an attribute request. A service may maintain
up to 32 bytes of attribute data. In the request packet, a 4
byte bitmask defines which of the 32 attribute bytes should be
returned in one or more attribute replies. What attributes are
specified by which bits is part of the standardization of the
service. Also, the format of attribute data (e.g., whether it is
an integer, a short character string, or a floating point value)
is defined in the standardization process for a service. When a
node receives an attribute request, it uses the attribute bitmask
to pack the requested values into one or more attribute reply
messages. A maximum of 10 bytes of data can be returned in
a single attribute reply message, so an attribute request may
result in more than one attribute reply. The attribute bitmask
in the reply indicates which bytes of attribute data are being
returned in that message (see Figure 4).

Fig. 4. TinySDP attribute reply
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F. TinyRPC

TinySDP also provides an ultra-lightweight RPC mecha-
nism, called TinyRPC, for complex client/service communi-
cation. RPC allows a client to initiate changes to a service
node, for example, to request a change of scale for temperature
readings or to request that readings be taken more often. The
RPC mechanism also allows a service to maintain more than
32 bytes of attribute data. The packet type field in the standard
TinySDP header is used to control RPC. Packet types greater
than 128 correspond to service type-specific RPC calls, and are
standardized for each service type. The RPC request and reply
packet formats are identical, carrying the standard TinySDP
header, a sequence number for matching RPC requests with
replies, and up to 12 bytes of parameter data. After getting a
service reply from a service-providing node and analyzing the
piggybacked attribute values, the client may initiate an RPC
request to get more specific information from the sensor.

Fig. 5. TinyRPC service request/reply

V. IMPLEMENTATION DETAILS

We have developed a prototype implementation of TinySDP.
We implemented our protocol using TinyOS version 1.1.11 and
NesC, developed at UC Berkeley, for programming the motes.
TinyOS provides an ad-hoc routing component architecture.
We built our protocol on top of this component by defining
a uniform packet format with a packet header for TinySDP.
TinyOS follows an Active Messaging (AM) model, which
means that every packet is associated with a handler ID that
invokes a specific event on the receiver. The AM model also
limits our packet size to a maximum of 29 bytes, which we
took into account during initial development of the TinySDP
protocol. The simulations were done in TOSSIM, which
compiles directly from TinyOS code and runs the same code
as on the Mica2 sensor hardware.

A. Service Discovery

In our implementation strategy we have tried to reduce the
advertisement and discovery messages to a minimum. When a
sensor node enters the sensor network, it distributes a service
advertisement. This advertisement is sent across the network
along a specific trajectory and cached by the sensors on the
path. To find a service, a service request merely needs to
intersect with a sensor along this path. The destination node
field in the message can be used to carry the orientation of
the probe. As long as the WSN has some reasonably accurate
measure of location and uses some positioning system, even
a local positioning system [6], then it is possible for sensors
to find each other in the network.

We propose two strategies along these lines. First, service
advertisements and service requests are sent along intersecting

trajectories, as shown in figure 6. Sensor A, which possesses a
service, advertises it along the North-South direction. Sensors
on the path cache this advertisement and then forward the
packet further. When sensor B needs a service, it sends a
message in the East-West direction to intersect the vertical
line. When it reaches a sensor that has cached the desired
information, the sensor forwards the request to the service
provider. However, if node B receives a negative acknowl-
edgement, indicating that the service was not found, it can
send another request in a different direction.

Fig. 6. Single Advertisement, multiple requests

A second, more robust idea, is to spread out the advertise-
ment in the network. This idea is illustrated in figure 7. Sensor
A, which possesses a service, sends out the advertisement in
two directions, North-South and East-West. Sensor B, which
needs a service, sends out multiple requests in directions at
45◦ angles relative to the advertisement. This guarantees that
at least one message intersects the advertisement path. If the
boundaries of the WSN are known, the orientation of service
request messages can be calculated intelligently so that the
request covers the maximum area of the network, reducing
the number of request messages.

Fig. 7. Multiple Advertisement, multiple requests

B. Route Resolution

TinySDP requires a multi-hop routing protocol. We make a
few assumptions while routing the packets. All nodes know
their location with respect to a co-ordinate system [10] [12],
the nodes are aware of their neighbors [8], they have a sense of
directionality [9] and a source node can find the co-ordinates
of the destination node from a location service [6] [7]. Since
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service discovery is a middleware protocol, we consider all
these assumptions to be reasonable. This is the basic informa-
tion needed to route packets in a network.

We use Trajectory Based Forwarding (TBF) as our routing
protocol. It is a hybrid of source-based routing and cartesian
forwarding [11]. Like source-based routing, the path is chosen
by the source, but without specifying all the intermediate
nodes. Like cartesian forwarding, decisions taken at each node
are greedy, but are not based on distance to the destination
– the measure is the distance along the desired trajectory.
TBF removes the overhead at each node to maintain and
update the routing information. Also, it trades off computation
for communication. Considering the four orders of magnitude
difference between the cost of sending a wireless packet and
executing an instruction [13], TBF saves precious resources.

C. Data Structures
All nodes store some basic information, including informa-

tion about a node’s services, its neighbors, and advertisements
received from other nodes. We have included only the most
essential information in the cache entries. Every node uses
three data structures for storing information. Two additional
tables are required for use with RPC in service discovery: an
RPC client table and an RPC server table.

1) Advertisement Table: The advertisement table contains
the latest advertisements that the node has received. An
advertisement is added to the advertisement table when it
arrives. The expiration time is also saved. After the service
expires, its entry in the table is removed or replaced with a
new advertisement.

2) Service Table: The service table maintains the list of
services that the node provides, including information like the
time duration for which the service will be provided and the
frequency with which it can be provided. Finally, the table
stores some standard values for a service. For instance, it
can store the maximum, minimum, or average value for the
chemical concentration of an element in the past 48 hours.

3) Neighbor Table: This table lists all the neighbors of a
node. The table contains a neighbor’s address and its location.
Before sending a packet, the next node is chosen from this
table per the rules of the routing protocol. The format of the
neighbor table may change according to the routing protocol
used. For TBF, the node finds the neighbor towards the
destination along a trajectory and then sends the packet.

4) RPC Client Table: The client table is maintained at the
service-providing node and contains the service specific data
related to the client it serves. The server, while processing the
request, checks the client table and updates it if no entry for
that client node is found. It records the service type it provides
to the client and stores information for future responses to the
client. This table is updated based on the service parameters
in the RPC request. For example, the user may send a request
to update the frequency at which it receives data.

5) RPC Server Table: The server table at the client node
lists the address of each node providing it service. Along with
the service type, it also records the scope of the service-
providing node. This table stores the information of the
service-providing node until the service is needed.

VI. SIMULATIONS AND RESULTS

A network with 50 nodes is simulated. All nodes are
assumed to have the same resources in terms of power and
memory. There are 11 kinds of services offered in the network.
We assume that all services follow a uniform distribution. We
use a random topology for the network. We have assumed a
dense convex network with stationary nodes. To the best of
our knowledge, no other protocols for service discovery on
wireless sensor networks have been proposed, so we compare
only our two proposed strategies.

The initial advertisements are sent when the network first
starts up. Since we have 50 nodes in our network, if all of them
start sending their advertisements together at network startup,
a few of the advertisement packets are lost. In order to ensure
that this doesn’t happen, the nodes send their advertisement
packets only in certain slotted time intervals. We give the
network a time of two virtual minutes to start up before
sending any request packets. The service requests are then
randomly generated by the nodes in the network every three
virtual minutes.

In order to analyze the results, we first define a few
metrics. We denote the total number of nodes as N . The
number of clients that successfully locate the service as Nsucc.
The number of service advertisement messages as Madv , the
number of service request messages as Mreq , and the total
number of messages sent as Mtotal. Each successful client c
receives 1 to m service reply messages with waiting times of
t1, t2, ..., tm.
• Success ratio (SR): The ratio (as a percentage) of the

number of nodes that successfully locate the service, over
the total number of clients. It is calculated as:

SR = Nsucc/N × 100(%) (1)

• Number of transmitted messages (Mtotal): The total
number of messages transmitted for the duration of the
simulation. This is a useful parameter to estimate the
efficiency of the protocol. It is calculated as:

Mtotal =
N∑

n=1

(Mreq + Madv) (2)

• Average waiting time (AWT): The minimum time period
in seconds, averaged over all the clients, starting from
the transmission of a service request message and ending
with the reception of a service reply message. It is
calculated as:

AWT =
∑N

n=1 min(t1, t2, ..., tm)
N

(3)

TABLE I
PERFORMANCE COMPARISON

Strategy RP Max SR Mtotal AWT
TinySDP Strategy1 TBF 97.14% 323 0.425
TinySDP Strategy2 TBF 99.3% 541 0.59
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Strategy 1 offers the least average waiting time and mini-
mum number of messages in the network. The success ratio
is comparable to Strategy 2. Strategy 2 offers a competitive
average waiting time. However, the number of messages is
more than Strategy 1. This is expected since we are sending
multiple advertisement and service request messages.

Since both the TinySDP strategies have few messages, this
saves network bandwidth and thus saves precious network
resources. Low waiting time for discovering services is a
measure of the high performance of our protocol.

The use of RPC does not require any additional inter-node
communication beyond the requirements for the base service
discovery protocol. RPC is built upon the service discovery
protocol. Once the service-providing nodes are discovered, we
can send RPC requests to these nodes. For RPC simulation,
the client requests are generated in a random manner. Each
simulation runs 50 different RPC requests generated from
random nodes. We observed that when the protocol simulates
50 random RPC requests, the total number of packets trans-
mitted, in a 50 nodes network, is 342. The number of packets
transmitted depends on the hops a packet takes to reach the
destination and the parameters in the service request. Since
we know the destination of the service-providing node during
an RPC call, the number of inter-node packets transmitted for
service requests and replies will not change.

VII. FUTURE WORK

Some ways in which the protocol can be extended are:
• The direction of transmission of the messages could be

computed intelligently based on the network information
and location of the nodes.

• The results shown have been simulated on networks with
convex boundaries. The work can be extended to concave
networks. One of the ways in which this can be done is
modifying the trajectories along which we send messages.
TBF, the routing protocol used in our simulations, allows
arbitrary trajectories. However, more research is required
to find suitable trajectories for networks with concave
boundaries, holes, obstacles, etc.

• We can also analyze the protocol with mobile nodes.
• Extending the RPC mechanism to highly dynamic en-

vironments depends on the efficiency of the underlying
routing mechanism. This is a topic for further study.
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